

Coupler test results

N. Solyak, S. Kazakov, B. Hanna PIP-II Technical Workshop FNAL, 12-14 July 2022

In partnership with:

India/DAE

Italy/INFN

UK/STFC

France/CEA/Irfu, CNRS/IN2P3

Poland, WUST

Total (fwr+refl) power responsible for coupler heating

Coupler test stand: 50kW SW (full reflection with arbitrary phase),

which is equivalent to 100kW total power

Vacuum parts assembled on coupling chamber

- Assembly in class 10 cleaning room
- Pumped and leak checked
- Baked 120C for 48 Hrs

 Then move to MDB for coupler air side assembly, Rf cooling and pumping line connection and Temperature diagnostic

Couplers at test stand. Phase 0° configuration.

Temp. diagnostics

Max. T < 60C for 50 kW, CW, full reflection

Power configuration

This schematic allow to achieve x5 amplification in power circulating in coupler

 IOT power is limited 30kW cw. In our setup we can provide 100-120kW power in coupler assembly

Low power RF measurements and reflection phase tuning

- Both waveguides are connected to WG-to-Coax transitions. After cable calibration, measure transition/reflection in coupler/chamber assembly.
- After that working configuration is assembled: one end connected to RF power line through movable reflector section, second end have WG insertion (length corresponds phase) and short.
- For each phase configuration the location of movable reflector (diaphragm) is tuned to get resonance in coupler assembly (see marks)

Cooling and Diagnostics

- Antenna is cooled by dry air with flow rate up to 13 CFPM (7g/s)
- Chamber flanges connected to copper electrode is cooled by water
- Window flange is connected by 4 copper straps to water cooled sink (to provide room temp boundary condition as in real CM)
- Diagnostics: vacuum (3), Temp (8), bias (2), Air flow (2), water flow, e-pick-ups(2)

Test protocol

- Typical Testing Conditions:
 - DC bias 4.5kV on inner conductor (each coupler) interlock
 - Air flow rate 13 SCFM (7.4 g/s) each antenna interlock
 - Water flow rate interlock
 - Vacuum gauges (both coupler). interlock 2.E-6 Torr
 - Temperature interlocks: T<140F (60K) on ceramic window flange
 - Final vacuum after processing <1.e-7 Torr
- Short summary of the testing protocol:
 - Start with pulse mode: 10, 20, 50, 100, 200, 500 ms: ramping RF power up to 100kW,
 - Switch to CW mode, ramping RF power up to 50kW, Stay: 1-2hrs to reach equilibrium temperature.
 - In HP tests the power ramping steps were controlled manually to keep vacuum below interlock level (will be automated, script exist and used in earlier tests)
- Test without HV bias
 - Start with shorter pulses:10,20,50,100,200,500µs; 1,2,5,10,20,...200,500ms and ramping power to 100kW
 - In cw regime power ramping up to 50kW

Coupler 1&2: Phase 0 and 90 deg

HV=4.5kV, Air flow rate ~7 g/s:

- Pulse mode: 0.01;
 0.05, 0.1; 0.2...200;
 500 ms; (100kW) CW mode was not available
- MP processing
- After processing stay at 100kW x 500ms x 1 hour

Green – RF power
Yellow/red – Air flow
Magenta/red circle – vacuum
White-T1; Cyan – T2

significant MP activity in pulse mode

Phase 180 and 270 degrees. No MP

Pulse and CW operation.

No MP up to 50kW

Phase 180 deg, 50kW CW, flow 13 CFM; HV = 4.5kV; T1=132; T2=111;

Phase=270 deg; 50kW CW , flow=13 CFM; HV=4.5kV; T1=125; T2=125K;

Coupler #1-#2

Phase 315; 225; 135
 and 45 degrees

• DC bias: 4.5kV;

Air Flow=13 CFM

Pulse mode: 10; 20;50; 100; 200; 500ms;up to 100kW

• CW mode: 50 kW x 1hrs

H:MDBRT2

H:MDBRT5

oBackup DegF

.Hins

MP activity at 45deg, stars above 70 kW, vacuum ~1.e-6 Torr

Max temp at windows: T₁- coupler#1,

T₂-coupler #2

Inspection after test

Coupler #1 Air side:

- white flakes (from sharp edges od Teflon support)
- One inner bellow changed colour (oxidation or missing copper)-
 - Oxidation removed successfully

Bellow before and after test

Flakes sent to material lab for investigation

Coupler 3&4: Power and Vacuum

No MP at 180,225,270 phases, vacuum <8.e-8 Torr

Coupler 3&4: Temperature profile vs RF phase

Coupler 5&6: Power and Vacuum

Coupler 5&6: Temperature profile vs. time

Coupler 5&6: Equilibrium temperature at 50kW

Min T_ chamber at RF phase ~225

At phase ~ 225° we have ~ symmetry in temperature distr.

- Window #5 temp are close
- WG #5 temp also similar

Coupler 8&9: RF power and vacuum

MP at 0 and 45 degrees at power ~100kW, no MP at 50kW CW. MP mostly in chamber #2, chamber#2 was better processed after first run with coupler 3&4 and extra baking 120C

Coupler 8&9: Temperatures

Chamber has min temperature at ϕ =225°

Coupler 10&11: Power and Vacuum

Temperatures (10 & 11)

MP vs. phase. Test with bias

RF power (2&3)

Coupler 3+4
Chamber#2
vac=8.e-8 Torr

Coupler 5+6
Chamber#1
vac=1.e-7 Torr

Coupler 8+9 Chamber#2 vac=8.e-8 Torr

Coupler 10+11
Chamber#1

vac=2.e-7 Torr

Window temperature at 50kW cw

Phase~180° Phase=315°

- 1&2, chamber#1: T1=50°C, T2=56°C
- 3&4, chamber#2: T1=47°C, T2=55°C
- 5&6, chamber#1: T1=52°C, T2=58°C
- 8&9, chamber#2: T1=50°C, T2=52°C
- 10&11,chamber#1:T1=50°C,T2=56°C

Similar temperature profiles (vs. Rf phase), deviation ~5 deg can be explained by water and air temp deviations

Coupler: Window /chamber Temp @50kW, cw

- Temperature variation on windows relatively small ($\Delta T \sim 10\text{-}20^{\circ}\text{C}$),
- Similar T vs Phase but shifted in RF phase ~ 90-120 deg.
- Equal temp at phases 60 deg and
 ~240 deg

Fields in chamber (Simulations)

Reflection phase from SC cavity corresponding phase in coupler test

SC cavity in resonance

SC cavity off- resonance

Window Temp for 50 kW and 30kW in HB650 CM:

(Total power 100kW/8.9 SCFM vs. 60kW/13 SCFM)

- In test we use max air flow rate ~13 SCFM (7.4 g/s)
- TRS: air flow = 8.9 SCFM (5g/s) for ~50 kW+20% reflection power (Total 60kW = 30kW at SW)
- For CM temperature will be lower than used in test mode

Green – RF power Yellow/red – Air flow red circle – T1; magenta-T2

RF power vs. Air rate with T_window = 55°C

RF Phase = 315 ° (show highest temp on window)

Power processing of coupler without DC bias

Recommended by TDR review committee

Done for coupler 10&11 assembly

- Coupler#11 no bias, other coupler #10 was under bias 4.5kV
- Two good RF phases (225 and 270 deg) and

Two bad phases with MP (0 and 90 deg)

Good phase=225 deg with no MP (Mar-18-2022)

- Coupler #10 with DC bias 4.5kV
- Coupler #11 with bias tunable from 0 to 4.5kV
- Pulses from 10 µs to cw.
 Power up to 100kW or
 50kW at CW

Results

- No MP (run ~1 hr)
- Switch bias off on coupler 10. No MP in all power range and pulse duration.

Pulses: 10;20;50;100;200;500µs;10;20;50;100;200;500ms.

Phase=0 (Mar-18-2022)

- Coupler #10 bias 4.5kV; coupler #11 - no bias.
- Pulses: 10,20,50,..500us;
 1,2,5,...500ms then CW
- MP starts at ~15kW at 10 μs.
- Slow progress up to 5ms that day
- Beam loading (80kW w/o bias vs. 100KW with bias)
- E-probe shows MP activity

Phase=0 w/o bias (continue Mar-21-2022, 9am).

- Start with 3kV, ~20min
- Then w/o bias, keep vacuum near interlock threshold 2e-6 Torr.
- MP levels from 15kW to 69kW, no MP above 70kW.
- In CW mode MP all way from 15 to 23kW.
- Vacuum is different in coupler 10 and 11 (signature of MP in coupler)

Phase 0 deg at CW: Slow processing (cont. Mar-22).

- Bias 4.5kV at coupler#10, no bias on coupler#11
- CW only
- Slowly increase power up 25kW, MP threshold=15kW
- Vacuum improved but limitation is window temperature at #11. Keep it below 132°F (55°C). Interlock T=150°F
- Vacuum is different in coupler 10 and 11→ MP in window

Phase 90 degrees, CW. Overheating of window due to MP

- Bias 4.5kV at #10, No bias at #11,
- Slow progress in CW mode (no pulse mode). Reached 30kW.
- Strong heating of window#11 (T~135F at 23kW, expected ~112F at 50kW)
- Vacuum #10 and #11 is different.

Phase 270 degrees, CW (March 24). Magnets

- Bias 4.5kV on #10, no bias on #11
- Run1: MP starts at 33kW. Higher temp at #11 window
- Run2: SmCo magnets on. Temp and vacuum is OK.
- Run3:
 - -Bias #11 is ON.

Reached 50kW cw with minor MP activity →,
Vacuum <2.e-7 Torr,
(same as w/o RF power).

MP outgassing improve vacuum

Studies with magnetic field to supress MP

- Configuration 45°, as worst for MP (also 90° and 270°)
- Achieved ~25-30kW in CW:
 - MP in window, can be suppressed by SmCo magnets or bias
 - With MP beam loading effect (power drop, when MP)
 - Also vacuum in coupler w/o bias is higher (asymmetry)
 - Bias 3kV completely suppress MP in window, not in chamber
 - Progress is very slow, since ceramic has no TiN coating

Conclusion from studies:

- MP exist in window and in chamber.
- Attempts to suppress MP in chamber by applying magnetic field was failed. (Switching magnet ON causes jumping in MP activity in chamber)

Need more MP simulation to explain.

Coupler #11 window after processing w/o bias

Vacuum side of ceramic after processing w/o bias

Air side of ceramic after processing w/o bias

STC: Coupler conditioning test

- HV = 4.5kV
- Air flow
- Flange heater = 6W

 ΔT~7°C when air flow rate increases from 4 to 12CFM

Coupler conditioning summary

- Couplers 1&2; 3&4; 5&6 8&9 and 10&11 were tested successfully at the test stand with the bias, no MP up to 50kW cw after processing. Pulse processing >50kW helps to clean surface. MP configurations: (phase 0, 45, 90, 135, 315)
- Window flange temperature not exceeds 60°C (stress limitation for ~0.1 Mcycles) for 50kW CW. For operation conditions: P<30kW, air flow 5g/s, expected flange temp < 45°C
- HP processing w/o bias is possible and useful for surface cleaning. HP processing procedure need to be develop to protect ceramic from contamination:
 - Reduce power to 30kW, eliminate regimes where MP located in window, better baking of chamber and couplers. TiN coating of ceramic may help.
- First STC test of LB650 cavity with coupler is done. Coupler works well up to 30kW available power. Detail measurements on coupler is planning

